A discrete weighted Helmholtz decomposition and its application

نویسندگان

  • Qiya Hu
  • Shi Shu
  • Jun Zou
چکیده

We propose a discrete weighted Helmholtz decomposition for edge element functions. The decomposition is orthogonal in a weighted L inner product and stable uniformly with respect to the jumps in the discontinuous weight function. As an application, the new Helmholtz decomposition is applied to demonstrate the quasi-optimality of a preconditioned edge element system for solving a saddle-point Maxwell system in nonhomogeneous media by a non-overlapping domain decomposition preconditioner, i.e., the condition number grows only as the logarithm of the dimension of the local subproblem associated with an individual subdomain, and more importantly, it is independent of the jumps of the physical coefficients across the interfaces between any two subdomains of different media. Numerical experiments are presented to validate the effectiveness of the non-overlapping domain decomposition preconditioner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

A Hierarchical 3-D Direct Helmholtz Solver by Domain Decomposition and Modified Fourier Method

The paper contains a noniterative solver for the Helmholtz and the modified Helmholtz equations in a hexahedron. The solver is based on domain decomposition. The solution domain is divided into mostly parallelepiped subdomains. In each subdomain a particular solution of the nonhomogeneous Helmholtz equation is first computed by a fast spectral 3-D method which was developed in our earlier paper...

متن کامل

Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption

In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation −∆u − (k2 + iε)u = f , with absorption parameter ε ∈ R. Multigrid approximations of this equation with ε 6= 0 are commonly used as preconditioners for the pure Helmholtz case (ε = 0). However a rigorous theory for such (so-ca...

متن کامل

PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES

Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...

متن کامل

Weighted Convolution Measure Algebras Characterized by Convolution Algebras

The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2013